11000	8		
Name	Data		
	Date	Class	,
A PART CONTROL CONTROL CONTROL OF THE PROPERTY	27.7.1		

CHAPTER 7

Ionic Compounds and Metals

Section 7.1 Ion Formation

In your textbook, read about chemical bonds and formation of ions.

Use each of the terms below just once to complete the passage.

chemical bon	d electrons	energy level	ions	noble gases	
nucleus	octet	pseudo-noble gas f	ormations	valence	
The force that	at holds two atoms together is ca		21		
Such an attachment may form by the attraction of the positively charged					
(2) Mucleus of one atom for the negatively charged					
of another atom, or by the attraction of charged atoms, which are called					
(4) Chemical Borel. The attractions may also involve					
(5) <u>Valance</u> electrons, which are the electrons in the outermost					
(6) <u>energy level</u> . The (7) <u>Moble Gasses</u> are a family of elements that have very					
little tendency to react. Most of these elements have a set of eight outermost electrons, which is called a					
stable (8) The relatively stable electron structure described a					
electrons in certain elements of groups 3, 4, 13, and 14 are called (9) Pseudo wohle gus formation					
For each statement below, write true or false.					
10. A positively charged ion is called an anion.					
11. Elements in group 1 lose their one valence electron, forming an ion with a 1+ charge.					
12. Elements tend to react so that they acquire the electron structure of a halogen.					
13. A sodium atom tends to lose one electron when it reacts.					
14. The electron structure of a zinc ion (Zn ²⁺) is an example of a pseudo- noble gas					
Fulse 15. A Cl ⁻ ion is an example of a cation.					
True 16. The ending -ide is used to designate an anion.					
17. Nonmetals form a stable outer electron configuration by losing electrons and becoming anions.					

IONIC COMPOUNDS (Continued)

Potassium nitrite	FeO
K NO2	Fron (II) Oxide
Calcium chlorate	NaHCO ₃
Ca(C103) Z	Sodium Bicarbonuti
Lron(II) hydroxide	(al:
Fc (011)2	Calcium Iodide
Committee	NH ₄ Br
-	Hamonium Bromida
Aluminum sulfite	BaCl ₂
H12 (003)3	Barium Chlorodo
Magnesium oxide	FePO ₄
Mg U	Fron (III) Phosphuse
Lead(II) iodide	Ag ₂ SO ₄
10+2	Silver Sulfax
Socium hypochlorite	Co(OH) ₂
Nacio	Colbalt (II) hydroxide
Lithium hydrogen sulfite	NH ₄ NO ₂
LI H503	Ammonium Nignite
monium carbonate	Cu ₂ O
W Hy/2 CO3	Copper(I) Oxicle
Mercury(I) chloride	K ₃ PO ₄
Hg CT	Potassium Phosphur
Aluminum oxide	(NH ₄) ₂ HPO ₄
11203	Ammonion Biphosphase
Personal	A Company